分享好友 资讯首页 频道列表

含有量子点的无机-有机混合半导体材料实现了超过100%的量子效率

2022-08-15 09:53170

       量子点是一种微小颗粒或纳米晶体,即直径在2-10纳米(10-50个原子)之间的半导体材料。在含有量子点的无机-有机混合半导体产生的光电流中,量子效率超过了100%。

 

图1 嵌入锡基纳米粒子的钙钛矿型半导体材料晶格结构。中国香港和韩国合作的国际团队实现了超过100%量子效率的光电转换。(图片来源:Heno Hwang,韩国科学技术院)

 

       钙钛矿材料作为一类半导体,在光收集应用领域十分引人注目,钙钛矿太阳能电池的性能也趋近于成熟。然而,提高光转换效率仍然是这项技术应用于更广泛市场的一大难题。

 

       光的能量是量子化的,称为光子。当一个半导体吸收一个光子时,电磁能量传递到带一个负电荷的电子和带一个正电荷的空穴上。电场可以使这些粒子向相反的方向运动,从而形成电流,这是太阳能电池的基本原理。虽然原理很容易理解,但优化量子效率,或者从入射光子中获得尽可能多的电子-空穴对,仍然是亟待解决的问题。

 

       低效率的一个原因是,如果光子的能量超过了产生电子-空穴对所需的能量,多余的能量以热能的形式耗散。然而,纳米材料提供了一种解决方案——小颗粒,即纳米晶体,也称量子点,可以使高能光子传递更多的能量产生电子-空穴对。

 

       近日,韩国科学技术院的Jun Yin和Omar Mohammed团队与香港理工大学Yifan Chen和Mingjie Li团队合作,在卤化锡钙钛矿纳米晶体中展示了这种多重激子的产生(以下简称MEG)。Yin说:“通过在钙钛矿纳米晶体设备中应用MEG,其光电量子效率提高了一倍以上。”

 

       先前研究表明,MEG在带隙交大的钙钛矿型纳米晶体中可以观察到,即只能吸收高能光子的半导体。

 

       因此,由于电子-空穴对解耦合或耗散太快,它们无法被一个正常工作的太阳能电池设备收集,这对窄带隙半导体材料造成更大的挑战。Yin说:“迄今为止人,仍未有在窄带隙钙钛矿纳米晶体中的高效MEG及在实际光学器件中固有MEG的证明。”

 

       Chen-Yin团队合成了一种半导体材料,这种材料由微小的甲脒锡-碘化铅钙钛矿颗粒——少量锡制成——嵌入到无锡的FAPbI3中。该团队认为,锡的引入有助于减缓“冷却”速度。Yin说:“通过改变其组成,我们将能够进一步优化钙钛矿纳米晶体,以获得更高的MEG性能和改善光电转换效率。”

 

       以上研究成果已发表在期刊《Nature Photonics》上。

反对 0
举报 0
收藏 0
打赏 0
评论 0
如何探测、防御、开发小行星
日前,在第三届深空探测(天都)国际会议上,中国探月工程总设计师、深空探测实验室主任兼首席科学家吴伟仁院士系统性介绍了小行星探测、防御与资源开发利用领域的国际发展趋势和最新成果,并提出中国小行星探测、防御和资源开发利用构想,同时向国际伙伴发出合作倡议。为什么要开展小行星探测、防御与开发?吴伟仁介绍,太

0评论2025-09-0822

科技赋能城市管理,别搞“AI盆景”
  近年来,我国城市化进程不断加快,城镇化率已从2012年的53.1%提高到2024年的67%,城镇常住人口达9.44亿,城市已成为承载亿万群众美好生活的重要载体。  面对规模日益扩大、结构日趋复杂的现代城市,传统粗放式管理早已难以为继。以大数据、人工智能(AI)、物联网等为代表的现代科技,为破解城市治理难题提供了重要支

0评论2025-09-0816

如何让更多科技成果“走出围墙”
一段时间以来,上海、湖北、山东等地加大人才培养力度,努力促进产学研合作,让更多创新成果走出围墙,寻找高校科技成果转化最优解。成果转化事关新质生产力的培育和发展,接下来,如何进一步围绕关键节点精准发力,构建有利于科技创新和成果转化的生态环境,成为值得关注的问题。高校作为知识生产主力军、创新研究生力军,

0评论2025-09-0827

算力热度持续攀升,如何“扩容”?
2025世界人工智能大会上,华为首次展出昇腾384超节点真机,其算力总规模达300PFLOPS;2025中国算力大会上,中国算力平台全面贯通,标志着一个国家级算力智慧大脑初步形成;DeepSeek新版本将适配下一代国产芯片近期,算力热度持续攀升。国务院日前印发《关于深入实施人工智能+行动的意见》,对算力建设作出一系列部署。数字

0评论2025-09-0824